
C code optimization
on ARM Cortex-M architectures

10 March 2025

V2.1

Introduction

2

 C Language for Embedded

 ARM Cortex-M Architecture

 Cortex-M fundamentals

 Optimizing C

 EABI Introduction

 Optimizing for Cortex-M

 Knowing your Compiler

 Q&A

Agenda

Cortex-M and EABI

4

Cortex-M Architectures

• There are several Cortex-M devices
implementing different ARM architectures.

ARMv6-M Cortex-M0
Cortex-M0+

Simplified architecture, low cost, less efficient high registers usage because
simplified instruction set, no HW division instruction.

ARMv7-M Cortex-M3 Rich instruction set, high performance devices. Efficient high registers usage.

ARMv7-MF Cortex-M4
Cortex-M7

Introduces FPU support.

ARMv8-M-BL Cortex-M23 Baseline ARMv8-M architecture, it is the “new” ARMv6-M. Introduces TrustZone
and some other new features, shares limitations.

ARMv8-M
ARMv8.1-M

Cortex-M33
Cortex-M52
Cortex-M55
Cortex-M85

Mainline ARMv8-M, introduces TrustZone and some other new advanced features.

5

ARM EABI – The integer registers file
From the programmer point of view the registers file is the
most important architectural aspect, registers type and
organization knowledge is important for writing good
code for embedded devices.

Only compiler-relevant registers are show.

Function-trashed
registers

Function-preserved
registers

Dedicated registers

Alternate registers

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13 / PSP
R14 / LR
R15 / PC PSR

R13 / MSP

Function parameters 1..4

Function return value,
32 or 64 bits

Fast automatic variables
and temporary values

Function return address

Pointer to function parameters
5+ and stack frame

High registers

Low registers

6

ARM EABI – The FP registers file
Note that FP registers are 32 bits wide and can store
single-precision float numbers.

On some devices double precision is supported by
coupling two 32 bits registers to form a single 64 bits
register. For example, S0 and S1 coupled are named D0.

S0
S1
S2
S3Function-trashed

registers S17
S18

FPSCR

Function-preserved
registers

Dedicated registers

S16

S4
S5
S6
S7
S9
S10
S11
S12
S13
S14
S15

S19
S20
S21
S22
S23
S24
S25
S26
S28
S29
S30
S31

7

ARM EABI – The stack frame

7

The function stack frame is an area of stack containing
extra function parameters and local variables.

Note, the stack pointer must be always aligned to 8 bytes
boundaries.

7

Var 1
Var 2

…
Var N

Par 5

Function local
variables space

Par 6
…

Par N

Parameters from 5
onward

Function-saved
registers

Function local variables
space, allocated by
callee in function
prologue.

Created by caller before
call point, removed after
callee return.

Stack frame

LR
Reg N-1

…
Reg 2
Reg 1

PSP after callee
prologue

PSP at call point

PSP before call

Saved registers space
and function return
address (LR).

The C compiler

C language for embedded

9

• Created by Dennis Ritchie in 70s.

• Still going strong for embedded
development.
 No runtime/OS assumptions, required for bare metal

programming.

 Predictable output, 1 to 1 relation between written C
code and generated ASM code.

 Can be seen as some kind of high-level assembler.

 Has limitations and allows for mistakes. Tools and
use standards exist to mitigate the problems.

 Excellent and stable compilers.

• Emerging alternatives.
 Often addressing the wrong problems. Still no ideal

language for embedded/system development.

GCC compiler

10

• 1st open-source compiler, almost 40 years
history.

• Excellent ARM support by ARM itself.

• Yearly releases for Windows, MAC and
Linux.

• Excellent generated code.

• Excellent documentation.

• World networking infrastructure largely
relying on GCC.

• Support for multiple languages.

• Using version 12.2 in following examples.

• LLVM getting closer.

Variables access

Accessing static variables

12

Accessing variables, apparently a trivial task. This is
simple example of a function increasing 3 static
variables:

static int a;
static int b;
static int c;

void test1(void) {

 a++;
 b++;
 c++;
}

Simple right?

It generates some quite complex asm code:

 8000360 <test1>:
 8000360: b430 push {r4, r5}
 8000362: 4d07 ldr r5, [pc, #28] <- Taking A address
 8000364: 4c07 ldr r4, [pc, #28] <- Taking B address
 8000366: 682a ldr r2, [r5, #0]
 8000368: 6823 ldr r3, [r4, #0]
 800036a: 4807 ldr r0, [pc, #28] <- Taking C address
 800036c: 1c51 adds r1, r2, #1
 800036e: 1c5a adds r2, r3, #1
 8000370: 6803 ldr r3, [r0, #0]
 8000372: 6029 str r1, [r5, #0]
 8000374: 3301 adds r3, #1
 8000376: 6022 str r2, [r4, #0]
 8000378: 6003 str r3, [r0, #0]
 800037a: bc30 pop {r4, r5}
 800037c: 4770 bx lr
 800037e: bf00 nop <- Just for alignment
 8000380: 20000814 .word 0x20000814 <- A address
 8000384: 20000810 .word 0x20000810 <- B address
 8000388: 2000080c .word 0x2000080c <- C address

Total: 44 bytes of code, note registers stacking.

Variables grouping optimization

13

An effective optimization is to group static variables
into a structure.

static struct {
 int a;
 int b;
 int c;
} group;

void test2(void) {

 group.a++;
 group.b++;
 group.c++;
}

It generates a much simpler asm code:

8000390 <test2>:
8000390: 4b05 ldr r3, [pc, #20] <- Address taken once
8000392: e9d3 0100 ldrd r0, r1, [r3]
8000396: 689a ldr r2, [r3, #8]
8000398: 3001 adds r0, #1
800039a: 3101 adds r1, #1
800039c: 3201 adds r2, #1
800039e: e9c3 0100 strd r0, r1, [r3]
80003a2: 609a str r2, [r3, #8]
80003a4: 4770 bx lr
80003a6: bf00 nop <- Just for alignment
80003a8: 20000800 .word 0x20000800 <- Structure address

Total: 28 bytes of code, note less registers used, no stack
used.

By grouping variables, the compiler “knows” the relative
offset between variables and can take the memory
address just once.

Registers pressure

Registers pressure

15

Register pressure is a concept that refers to the
limited number of registers available in a processor
and the allocation pressure on these registers when
executing a program.

In the context of the C language, register pressure
can have a significant impact on the performance of a
program. C programs often use many variables, and
the compiler must allocate these variables to registers
or memory locations.

When there are more variables than available
registers, the compiler must spill some of the variables
to memory, which can result in slower program
execution and increased stack usage.

Therefore, managing register pressure is an important
consideration for optimizing the performance of C
programs.

Factors contributing to register pressure:

• Number of function parameters.
• Number of function automatic variables.
• Calling functions within functions.
• Accessing numerous global variables (the pointer to

the variable is kept within a register).
• Functions inlining.
• Called functions visibility from caller point.
• Pressure varies across the lines within a function, the

impacting value is the highest one.

Registers pressure - details

16

Contributing factor Explanation
Number of automatic variables Increase pressure by 1 or 2 for each overlapping automatic variable at the

variable use point.
Calling a function Increase pressure by 5 at the function call point.

Accessing global variables Increase pressure by 2 for each overlapping global variable use point
(pointer to the variable and value).

Accessing a variable allocated in
stack frame.

Increase pressure by 1 at the variable use point (value brought temporarily
into a register).

Factors contributing to register pressure:

• Number of function automatic variables. Each variable takes one register (two for 64 bits variables).
• Calling functions within functions. Calling functions invalidates registers R0, R1, R2, R3, R12 making them unavailable to

variables allocation.
• Accessing numerous global variables. Each global variable is accessed by pointer, the pointer takes one register, the temporary

variable storage takes another register.
• Complex expressions requiring multiple intermediate results, common sub-expressions elimination.

Registers pressure – overlapping variables

17

Overlapping variables are those whose life span overlaps the life span of other variables:

void func(int a) {
 int b;
 int c;

 . . .

 foo(a);

 . . .
}

Arranging the code to make variables and parameters have non-overlapping life spans reduces
register pressure. Parameters life span always start at function begin.

Use of parameter ‘a’

Use of variable ‘b’

Use of variable ‘c’

Maximum pressure point (6)

Registers pressure – example

18

Example code:

static int var1;

__attribute__((noinline))
void foo1(int p1, int p2) {

 var1 -= p1 + p2;
}

int test4(int a) {
 int b;
 int c;

 var1++;
 b = var1;
 foo1(a, b);
 var1++;
 c = var1 + a;

 return c;
}

Resulting asm code:

 80003f0 <test4>:
 80003f0: b538 push {r3, r4, r5, lr} ; Prologue, note R3 pushed for alignment
 80003f2: 4c06 ldr r4, [pc, #24] ; Pointer to var1
 80003f4: 6821 ldr r1, [r4, #0] ; Value of var 1
 80003f6: 3101 adds r1, #1 ; Increase value of var1
 80003f8: 4605 mov r5, r0 ; Moving ‘a’ in R5 because function call
 80003fa: 6021 str r1, [r4, #0] ; Store new value of var1
 80003fc: f7ff fff0 bl 80003e0 <foo1>
 8000400: 6823 ldr r3, [r4, #0] ; Taking var1 value again
 8000402: 3301 adds r3, #1 ; Increase value of var1
 8000404: 6023 str r3, [r4, #0] ; Store new value of var1
 8000406: 1958 adds r0, r3, r5
 8000408: bd38 pop {r3, r4, r5, pc} ; Restoring registers and return
 800040a: bf00 nop <- Just for alignment
 800040c: 20000800 .word 0x20000800

Note how because pressure the compiler is forced to stack 4 registers
in the function prologue and restore them in the epilogue.

Function types

Functions

20

Functions are an essential part of the C programming
language. They are used to break down a large
program into smaller, more manageable pieces of
code. Functions allow developers to reuse code,
making it easier to maintain and update programs.
They also help to improve the readability and
organization of code, making it easier to understand
and debug. In C, functions can be used to perform a
wide range of tasks, from simple calculations to
complex operations.

Functions are also the main target for code
optimization often being a major bottleneck for code
execution.

C functions:

• Code organization and readability.
• Avoiding redundant or duplicated code.
• Important target for code optimization.
• There are many kind of functions, choosing the right

one.
• Optimizing often requires non-standard C extensions.

Global functions

21

This is the most common type of functions but also the
one causing most problems to the compiler for code
optimization.

• Calling a global function trashes r0..r3, r12
registers forcing the compiler to move data
contained there to other registers or in
memory locations within the function stack
frame.

• External functions are “opaque”, the compiler
cannot tell if the function really trashes all
those registers or just some of them, so it
must assume “all trashed”.

• External functions are also memory barriers,
calling a global function makes the compiler
assume that global variables potentially
changed, making the compiler not trust
variables cached in registers, basically forcing
a re-fetch.

int fname(int par1, .., int parN, ...) {

 /* Function body.*/

 return 0;
}

This is the general declaration form:

Functions can have an unlimited number of
parameters and optionally have a variable number of
parameters using the “…” notation.

Functions can return a result or “void”.

When possible, avoid:
• Using more that 4 parameters.

• Using variable number of parameters.
• Returning types larger than 32 bits.

A good idea is to use Link Time Optimization that
makes the compiler aware of function at whole
application level

Local functions

22

Local functions are visible to the compiler from places
where functions are called offering some hints for
optimizations.

• Calling a local function trashes r0..r3, r12
registers forcing the compiler to move data
there contained to other registers or in
memory locations within the function stack
frame.

• Local functions are “transparent”, the compiler
can tell if the function really trashes all those
registers or just some of them, so it can
optimize registers usage.

• Local functions, being transparent, tell the
compiler if/which static variables are modified
by the function. This allows the compiler to not
re-fetch unmodified variables.

• Local functions are eligible for inlining.

• Avoid naming conflicts.

This is the general declaration form:

static int fname(int par1, .., int parN, ...) {

 /* Function body.*/

 return 0;
}

Functionally local functions are equivalent to global
functions except their visibility is limited to the local
module. When possible, functions should be declared
as static.

Inline functions

23

Inline functions code is “dissolved” into the caller
function code.

• There is no registers trashing because the
function is not actually called but incorporated
in the caller.

• Less stack usage because no function is
called. This saves stack RAM, especially
important when an RTOS is used.

• Being the code “dissolved” in the caller allows
the compiler to optimize caller and callee
together improving overall registers pressure.

• Inline functions are often placed in header
files as replacement for preprocessor macros,
replacing macros with inline functions is
recommended because stronger checking
and no risk of side effects.

This is the general declaration form:

static int fname(int par1, .., int parN, ...) {

 /* Function body.*/

 return 0;
}

Note that the “inline” keyword does not enforce
inlining, it only gives the compiler a hint that inlining is
desirable. Avoid:

• Making large inline functions, this can make
code size explode.

• Avoid inline functions in .c files, make those
plan “” functions and let the compiler if/when
inline those. Inline functions are better
declared in .h files.

Forced inline functions

24

Forced inline functions are not a standard C feature, it
is done using compiler-specific extension.

Luckly CMSIS offers an abstraction that allows to use
this feature in a portable way.

• Forced inline functions are guaranteed to be
inlined

• Same advantages/disadvantages as normal
inline functions.

• Being a CMSIS abstraction this is a Cortex-M
specific feature.

• GCC can do this on any architecture by using
the function attribute:

__attribute__((always_inline))

This is the general declaration form:

#include "cmsis.h"

__STATIC_FORCEINLINE int fname(int par1, .., int
parN) {

 /* Function body.*/

 return 0;
}

Alternatively:

__attribute__((always_inline))
int fname(int par1, .., int parN) {

 /* Function body.*/

 return 0;
}

Cold and hot functions

25

Cold and hot functions give the compiler a hint about
functions that should be compiled with specific
options.

Cold functions are those rarely executed, the compiler
optimizes cold functions for size rather than for speed.

Hot functions are those that affect system
performance significatively, the compiler optimizes hot
functions for speed rather than for size.

• GCC can do this on any architecture by using
the function attributes:

__attribute__((cold))
__attribute__((hot))

• Cold and hot functions are GCC-specific
extensions, other compilers may or may not
have this capability.

Cold functions:

__attribute__((cold))
int fname(int par1, .., int parN, ...) {

 /* Function body.*/

 return 0;
}

Hot functions:

__attribute__((hot))
int fname(int par1, .., int parN, ...) {

 /* Function body.*/

 return 0;
}

Pure functions

26

Calls to functions that have no observable effects on
the state of the program other than to return a value
may lend themselves to optimizations such as
common subexpression elimination. Declaring such
functions with the pure attribute allows the compiler to
avoid emitting some calls in repeated invocations of
the function with the same argument values.

The pure attribute prohibits a function from modifying
the state of the program that is observable by means
other than inspecting the function’s return value.

However, functions declared with the pure attribute
can safely read any nonvolatile objects and modify the
value of objects in a way that does not affect their
return value or the observable state of the program.

This is the general declaration form:

__attribute__((pure))
int fname(int par1, .., int parN) {

 /* Function body.*/

 return 0;
}

Pure functions:
• Can improve code size/speed.
• Pure functions are GCC-specific

extensions, other compilers may or may
not have this capability.

Const functions

27

Calls to functions whose return value is not affected by
changes to the observable state of the program and
that have no observable effects on such state other
than to return a value may lend themselves to
optimizations such as common subexpression
elimination. Declaring such functions with the const
attribute allows the compiler to avoid emitting some
calls in repeated invocations of the function with the
same argument values.

The const attribute prohibits a function from reading
objects that affect its return value between successive
invocations. However, functions declared with the
attribute can safely read objects that do not change
their return value, such as non-volatile constants.

The const attribute imposes greater restrictions on a
function’s definition than the similar pure attribute

This is the general declaration form:

__attribute__((const))
int fname(int par1, .., int parN) {

 /* Function body.*/

 return 0;
}

Const functions:

• Can improve code size/speed.

• Const functions are GCC-specific extensions,
other compilers may or may not have this
capability.

Other GCC attributes

28

Other GCC function attributes affecting optimization, see the GCC manual for details:

Attribute Explanation
aligned Makes a function start address aligned to a specified power of 2 number. This can

lead to performance improvements in system with flash-prefetch features or cache
memories.

flatten Makes a function “flat”, all functions called from within the function are inlined if
possible.

leaf Gives compiler a hint that a function is not escaping the execution flow using
function pointers.

noinline Prevents a function to be inlined.

noreturn Used for function that do not return to the caller function. This can improve
generated code.

Function-related tricks

Head calls #1

30

A specific optimization can be performed when a
function calls another function that takes some of its
parameters as parameters. See this example:

This results in the following code:

8000430 <test5>:

 8000430: b508 push {r3, lr}

 8000432: 4603 mov r3, r0 <- reordering

 8000434: 460a mov r2, r1 <- reordering

 8000436: 2012 movs r0, #18

 8000438: 4619 mov r1, r3 <- reordering

 800043a: f7ff ffe9 bl 8000410 <foo2>

 800043e: 4b02 ldr r3, [pc, #8]

 8000440: 6818 ldr r0, [r3, #0]

 8000442: 3001 adds r0, #1

 8000444: 6018 str r0, [r3, #0]

 8000446: bd08 pop {r3, pc}

 8000448: 20000800 .word 0x20000800

void foo2(int p1, int p2, int p3) {

 var1 -= p1 + p2 + p3;
}

int test5(int a, int b) {

 foo2(18, a, b);

 var1++;

 return var1;
} The order of parameters forces the compiler to reorder

registers before calling foo2().

Head calls #2

31

Simple change, just keep parameters order and
position the same as in caller function:

This results in the following code:

8000450 <test6>:

 8000450: b508 push {r3, lr}

 8000452: 2212 movs r2, #18

 8000454: f7ff ffdc bl 8000410 <foo2>

 8000458: 4b02 ldr r3, [pc, #8]

 800045a: 6818 ldr r0, [r3, #0]

 800045c: 3001 adds r0, #1

 800045e: 6018 str r0, [r3, #0]

 8000460: bd08 pop {r3, pc}

 8000462: bf00 nop <- Just for alignment

 8000464: 20000800 .word 0x20000800

void foo2(int p1, int p2, int p3) {

 var1 -= p1 + p2 + p3;
}

int test5(int a, int b) {

 foo2(a, b, 18);

 var1++;

 return var1;
}

Simple change and much better resulting code.

Tail calls #1

32

An important optimization is when a function calls
another function as very last thing in this body.
Example:

This results in the following code:

8000480 <test7>:

 8000480: b508 push {r3, lr} <- stacking LR

 8000482: f7ff fff5 bl 8000470 <foo3>

 8000486: 4a02 ldr r2, [pc, #8]

 8000488: 6813 ldr r3, [r2, #0]

 800048a: 3301 adds r3, #1

 800048c: 6013 str r3, [r2, #0]

 800048e: bd08 pop {r3, pc} <- unstacking LR

 8000490: 20000800 .word 0x20000800

int foo3(int p1, int p2) {

 return p1 + p2;
}

int test7(int a, int b) {
 int sum;

 sum = foo3(a, b);

 var1++;

 return sum;
}

Apparently, nothing wrong but there are non-
obvious problems in this.

Tail calls #2

33

The increase of var1 could be moved before the
function call making the call of foo3() the last
statement in the function body:

This results in the following code:

80004a0 <test8>:

 80004a0: 4a02 ldr r2, [pc, #8]

 80004a2: 6813 ldr r3, [r2, #0]

 80004a4: 3301 adds r3, #1

 80004a6: 6013 str r3, [r2, #0]

 80004a8: f7ff bfe2 b.w 8000470 <foo3> <- Note here, it’s a branch not a call

 80004ac: 20000800 .word 0x20000800

int foo3(int p1, int p2) {

 return p1 + p2;
}

int test8(int a, int b) {

 var1++;

 return foo3(a, b);
}

Now the caller function does not need to
stack/unstack LR anymore because foo3() does
not return in test8() but directly in test8() caller.

In addition, there is less stack usage because
test8() and foo3() stack frames overlaps instead of
nesting, saving stack is especially important when
using and RTOS.

Function crossing #1

34

One onerous operation is to bring variables across
a function call. Example:

This results in the following code:

80004d0 <test9>:

 80004d0: b538 push {r3, r4, r5, lr}

 80004d2: 4c05 ldr r4, [pc, #20] <- Address of “var1” in R4

 80004d4: 6823 ldr r3, [r4, #0]

 80004d6: 4403 add r3, r0

 80004d8: 460d mov r5, r1 <- Variable “b” moved in R5

 80004da: 6023 str r3, [r4, #0]

 80004dc: f7ff fff0 bl 80004c0 <foo4>

 80004e0: 6823 ldr r3, [r4, #0]

 80004e2: 442b add r3, r5

 80004e4: 6023 str r3, [r4, #0]

 80004e6: bd38 pop {r3, r4, r5, pc}

 80004e8: 20000800 .word 0x20000800

void foo4(int p1, int p2) {

 var1 += p1 + p2;
}

void test9(int a, int b) {

 var1 += a;

 foo4(a, b);

 var1 += b;
} Note that there is a lot of stacking/unstacking done to

bring R4, R5, LR values across the function call.

Function crossing #2

35

Now we make foo5() return “p2”.

This results in the following code:

8000510 <test10>:

 8000510: b510 push {r4, lr} <- Less stacking

 8000512: 4c05 ldr r4, [pc, #20]

 8000514: 6823 ldr r3, [r4, #0]

 8000516: 4403 add r3, r0

 8000518: 6023 str r3, [r4, #0]

 800051a: f7ff ffe9 bl 80004f0 <foo5>

 800051e: 6823 ldr r3, [r4, #0]

 8000520: 4403 add r3, r0

 8000522: 6023 str r3, [r4, #0]

 8000524: bd10 pop {r4, pc} <- Less unstacking

 8000526: bf00 nop <- Just for alignment

 8000528: 20000800 .word 0x20000800

int foo5(int p1, int p2) {

 var1 += p1 + p2;

 return p2;
}

void test10(int a, int b) {

 var1 += a;

 b = foo5(a, b);

 var1 += b;
}

Code is a bit smaller, there are less stacked registers
making it faster and resulting in less stack space
used.

Now “b” does not need to be brought
around foo5(), it is bridged within foo5().

Branches optimization

Optimizing branches

37

Most microcontrollers include prefetch mechanism on flash controllers.
Because of this jumping out an instruction sequence can have a cost of
several cycles, flash is slow, you can have many wait states when the
prefetch queue is empty.

The problem is that compilers are mostly unable to decide if to jump when a
condition is true or false.

• Flash memories are “slow” compared to CPUs this is why several
wait states are to be expected.

• Flash-stored programs take an execution impact when jumping out
of an instruction flow.

• Sometime compiler cannot guess the best way to arrange code,
manual optimization is required.

Likely and Unlikely conditions #1

38

GCC offers support for giving hints to the compiler
about probability of a condition to be true or false.

For simplicity we define a couple macros like this:

Here an example taken from ChibiOS:

static inline
ch_priority_queue_t *ch_insert(ch_priority_queue_t *pqp,
 ch_priority_queue_t *p) {

 /* Scanning priority queue, the list is assumed to be
 mostly non-empty.*/
 do {
 pqp = pqp->next;
 } while (unlikely(pqp->prio >= p->prio));

 /* Insertion on prev.*/
 p->next = pqp;
 p->prev = pqp->prev;
 p->prev->next = p;
 pqp->prev = p;

 return p;
}

#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)

The parameter “x” of the macro is a Boolean
expression, the macros just return the expression
result but also give the compiler a hint about if the
condition is likely or unlikely to be true.

Likely and Unlikely conditions #2

39

Some examples:
8000540 <test11>:

 8000540: 4a05 ldr r2, [pc, #20]
 8000542: b508 push {r3, lr}
 8000544: 6813 ldr r3, [r2, #0]
 8000546: 2b00 cmp r3, #0
 8000548: dc00 bgt.n 800054c <test11+0xc> <- note
 800054a: bd08 pop {r3, pc}
 800054c: 3301 adds r3, #1
 800054e: 6013 str r3, [r2, #0]
 8000550: f7ff ffee bl 8000530 <foo6>
 8000554: bd08 pop {r3, pc}

 8000560 <test12>:
 8000562: b508 push {r3, lr}
 8000564: 6813 ldr r3, [r2, #0]
 8000566: 2b00 cmp r3, #0
 8000568: dd03 ble.n 8000572 <test12+0x12> <- note
 800056a: 3301 adds r3, #1
 800056c: 6013 str r3, [r2, #0]
 800056e: f7ff ffdf bl 8000530 <foo6>
 8000572: bd08 pop {r3, pc}

 8000580 <test13>:
 8000580: 4a05 ldr r2, [pc, #20]
 8000582: b508 push {r3, lr}
 8000584: 6813 ldr r3, [r2, #0]
 8000586: 2b00 cmp r3, #0
 8000588: dc00 bgt.n 800058c <test13+0xc> <- note
 800058a: bd08 pop {r3, pc}
 800058c: 3301 adds r3, #1
 800058e: 6013 str r3, [r2, #0]
 8000590: f7ff ffce bl 8000530 <foo6>
 8000594: bd08 pop {r3, pc}

void test11(void) {

 if (var1 > 0) {
 var1++;
 foo6();
 }
}

void test12(void) {

 if (likely(var1 > 0)) {
 var1++;
 foo6();
 }
}

void test13(void) {

 if (unlikely(var1 > 0)) {
 var1++;
 foo6();
 }
}

Project settings optimizations

Importance of setting up a project correctly

41

Compilers have a lot of options that can be used to
optimize the final code, lets see some options available on
GCC (and CLANG):

• Global optimization level: -O0, -Og, -Os, -O1, -O2, -O3
(also –Oz for CLANG).

• Functions alignment: -falign-functions=32
• Important for MCUs with caches or flash prefetch buffers.

• Correct libraries selection: --specs=nano.specs
• Make sure to use compact libraries when more types are available.

Use of memories

42

Modern MCUs can have multiple RAM memory types and
banks, for example Caches, DTCM, TCM, etc. Also often
multiple banks are available, on STM32 those are named
SRAM1, SRAM2 etc.

What is the correct way to use those? We need to design a
correct memory layout for our application, this is very
important for our code performance.

Use of DTCM

43

DTCM is a data SRAM very close to a CPU core, it can have advantages and limitations, for example:
Pros:

• Very close to the core, DTCMs have very often zero wait states access, fastest data memory in the system,

Cons:
• Limited in size, DTCMs are usually very small 8..64kB.

• Accessibility limitations, ITCMs can be accessed only by the core owning it. Access from other cores or other bus masters (DMAs) is very slow or not
possible at all, carefully read your device documentation.

Right use for a DTCM:
• MSP area (Main Stack in Cortex-M), this will ensure lowest latency and jitter for IRQ servicing.

• PSP area (Process Stack in Cortex.M), this will make sure that C automatic variable are accessed efficiently.

• Task Stacks for your RTOS, this will make sure that C automatic variables private to tasks are accessed efficiently.

• Very critical data structures, for example, if you have a small set of variables accessed by your critical control loop then DTCM is the right place.

Wrong use for a DTCM:
• DMA-accessible buffers. On Cortex-M external access to DTCM incurs in a high number of extra cycles and could be not possible at all depending

on your device implementation.

• Non-critical data, DTCMs are small, use the resource wisely.

• Code, use ITCM instead.

Use of ITCM

44

ITCM is a code SRAM very close to a CPU core, it can have advantages and limitations, for example:
Pros:

• Very close to the core, ITCMs have very often zero wait states access, fastest code memory in the system,

Cons:
• Limited in size, ITCMs are usually very small 8..64kB.

• Accessibility limitations, DTCMs can be accessed only by the core owning it. Access from other cores or other bus masters (DMAs) is very slow or
not possible at all, carefully read your device documentation.

Right use for an ITCM:
• Cortex-M vectors table, putting the vector table in ITCM makes sure that IRQs are serviced with lowest latency and jitter.

• Critical ISRs code.

• Critical tasks code (if using an RTOS).

• Critical functions.

• In general, critical control loops.

Wrong use for an ITCM:
• Code shared with other cores.

Use of System SRAMs

45

System SRAMs are the largest SRAM resources in your MCUs:
Pros:

• Good performance but not as good as TCMs (if TCMs are present).

• Equidistant from all bus masters (cores, DMAs, complex peripherals).

• Often segmented in multiple banks (separate bus slaves) allowing concurrent access by multiple bus masters.

Cons:
• Not as good as DTCM for data and ITCM for code.

Right use for System SRAMs:
• Basically, anything is not fitting in TCMs should be placed in System SRAMs.

Use of multiple System SRAMs and Caches

46

Why there are multiple SRAM blocks in my MCU?
Multiple SRAMs are often placed sequentially so you can access the whole SRAM as a single contiguous SRAM area but is this the right thing to do? Most
likely not, if you use other bust masters such as DMAs, Ethernet controllers, etc. then you want to optimize buffers allocation in memory master, avoid access
conflicts.

Few recommendations:

• Place your DMA buffers in their own SRAM bank, make the bank non-cacheable if your MCU has also a data cache.

• This makes sure that DMAs and CPU do not conflict very often.

• Simplifies cache management.

• Make your Ethernet descriptors and buffers in their own SRAM bank and make the bank non-cacheable.

• Ethernet can be very a traffic-intensive bus master, you don’t want it to conflict with your CPU accesses.

• Data structures and buffers accessed by multiple masters and CPUs are best placed in a non-cacheable SRAM, the cache coherency is not handled
on Cortex-M and SW cache management overhead is heavier than just making shared data non-cacheable. Use the Cortex-M MPU to declare non-
cacheable regions.t

• When designing your application memory usage make sure to have fully understood the device bus architecture, some devices are really tricky, see
the STM32H7xx for example. Devices with multiple cores are even more complex.

Final suggestions

Few random suggestions

48

We need to make sure that we are trying to optimize the right thing and verify that we are doing it right, few
suggestions.

• Identify critical code and focus your optimization efforts there.

• Measure your code often:
• Code size.

• Execution speed.

• Memory usage.

• Make sure to check for speed for improvements under ideal measurement conditions:
• Measure under the final compiler optimization options.

• Run benchmarks on a zero-wait-states memory or you can experience measurement artifacts.

• Local optimizations are good, but a good SW architecture is even more important, design for efficiency, use
the right data structures. There are early tradeoffs to be done.

• Allocate critical code and data on fast memories like DTCMs/ITCMs.
• Understand your MCU architecture, not all memories are equal.

• There are configurations affecting performance.

Topics not yet covered

49

There are other optimization-related topics that should be covered:

• Choosing the right C types for your variables.

• Assigning data structures to correct memories on NUMA devices.

• Improving your ISRs.

• Use OOP, language does not matter.

• Pass pointers or references to structures as parameters, not individual variables.

• Enforce alignment of functions and loops.

• Importance of instrumenting code for easy and repeatable benchmarking.

© STMicroelectronics - All rights reserved.
ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries.
For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

Thank you

http://www.st.com/trademarks

	C code optimization�on ARM Cortex-M architectures
	Introduction
	Cortex-M and EABI
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	The C compiler
	C language for embedded
	GCC compiler
	Variables access
	Accessing static variables
	Variables grouping optimization
	Registers pressure
	Registers pressure
	Registers pressure - details
	Registers pressure – overlapping variables
	Registers pressure – example
	Function types
	Functions
	Global functions
	Local functions
	Inline functions
	Forced inline functions
	Cold and hot functions
	Pure functions
	Const functions
	Other GCC attributes
	Function-related tricks
	Head calls #1
	Head calls #2
	Tail calls #1
	Tail calls #2
	Function crossing #1
	Function crossing #2
	Branches optimization
	Optimizing branches
	Likely and Unlikely conditions #1
	Likely and Unlikely conditions #2
	Project settings optimizations
	Importance of setting up a project correctly
	Use of memories
	Use of DTCM
	Use of ITCM
	Use of System SRAMs
	Use of multiple System SRAMs and Caches
	Final suggestions
	Few random suggestions
	Topics not yet covered
	Slide Number 50

